Rick Perry’s Coal and Nuclear Subsidy NOPR

At the end of September Energy Secretary Perry sent a request to the Federal Energy Regulatory Agency to initiate a Notice of Proposed Rule (NOPR) to create “Grid Resiliency Pricing.” Under the guise of increasing grid reliability and resilience, the Trump Administration is doing nothing more than radically increasing subsidies to uneconomic coal and nuclear generating plants. This is simply an effort to artificially create demand for coal and bail out owners of nuclear generating stations.

The Administration is proposing that “fuel secure” generating stations receive “full recovery of costs” and a “fair rate of return.”  “Fuel secure” is defined as any generating station that maintains a 90 day supply of fuel on site, but might as well say “coal and nuclear generating stations” because those are the only types that can meet the proposed rule criteria.

The NOPR acknowledges that these plants would not be economic under normal market pricing schemes and are therefore subject to premature retirement.

DOE wants coal and nuclear plants to operate under monopoly pricing within what is supposed to be a wholesale electricity free market. Think about that for a moment.  An unabashedly free market Administration wants to impose what amounts to socialized medicine for certain sectors of the economy.

The NOPR alleges that these plants are essential for grid reliability and resiliency because: coal and nuclear plants that would otherwise be retired enhance grid resiliency during extreme weather such as the Polar Vortex of 2014; providing grid resiliency is not valued in wholesale markets and should be; the North American Reliability Council (NERC) agrees with DOE; the DOE staff report on reliability (a failed attempt by the Administration to claim renewable resources were a detriment to grid reliability); and (most importantly) “Congress is concerned.”

Let’s take a look at some of these assertions.

First, the threat of fuel supply disruptions. I give you Exhibit A1:

In actual fact, the greatest threat to grid resiliency from extreme weather is the quality of the transmission and distribution system. A system whose efficiency and resilience contribution could be vastly improved with a much more aggressive implementation of new smart technology.

While NERC may agree in principle that grid resiliency should be valued, the ISO/RTO Council, the organization representing all of North American wholesale power grids, has filed comment that the FERC should not issue the rule for several reasons, including “the NOPR would undermine competitive markets and Is legally Infirm.”2

The authors of the DOE Reliability study offered a few other recommendations that did not end up in the report, including the fact that what constitutes grid resiliency and how all the factors that affect it (such as fuel security) are not well understood and merit considerable analysis before a valid pricing method can be determined.3

Finally, the most important reason for the NOPR needs to be understood and properly characterized.  The DOE document says “Congress is concerned,” referencing a letter from the House Science and Technology Committee, a committee controlled by an extremely partisan group that promotes the interests of fossil fuel industry and unabashedly rejects climate science.

These, however, are the reasons on principle that the NOPR should be withdrawn.  There’s that other factor of cost.  Energy Innovations, LLC, evaluated the costs of implementing the NOPR under four different interpretations of how the pricing could go4, from a conservative estimate that covers the shortfall in cost from wholesale value to operating costs to break even (Reading 1), through to an aggressive case that not only offers full cost recovery but full return on capital and full dispatch even if under normal conditions the unit would not be so dispatched (Reading 4). The following table shows how these 4 interpretations might impact customers in the four regions that would be affected. (PJM = Middle Atlantic, Ohio, VA; ISO-NE =New England; MISO = Midwest; NYISO= New York State)

Source: Energy Innovations, LLC

This NOPR has the potential to significantly increase customer cost and have a dampening effect on the economy for very questionable reasons.


There is a certain irony in this attempt to reregulate from an Adminstration bound and determined to unregulate everything. One can only conclude that this is a hastily cobbled approach to bailout coal and nuclear interests that have found themselves uneconomic in wholesale power markets relative to other technologies. The NOPR ought to be rejected on its face.

If a sincere attempt is to be made to examine the issue of grid resilience and reliability, a much more careful and comprehensive analysis ought to occur.  This analysis needs to give consideration to a number of factors that can affect reliability and new technologies that could enhance reliability and resilience in a much more cost effective manner.

In the absence of pricing methodologies, enormous improvements in resilience and reliability have yet to be obtained through the implementation of smart transmission and distribution technologies on all networks. Rather than burdening customers to simply prop up failing technologies, consider investments in new ones that provide long term solutions.



1 http://rhg.com/notes/the-real-electricity-reliability-crisis

2 Comments of the ISO/RTO Council on the September 28, 2017 Notice of Proposed Rulemaking by the Department of Energy

3 https://www.utilitydive.com/news/silverstein-if-id-written-the-doe-grid-study-recommendations/506274/

4 http://energyinnovation.org/wp-content/uploads/2017/10/20171021_Resilience-NOPR-Cost-Research-Note-FINAL.pdf

Procrustean Interpretations of the Uranium One Deal

The Clintons certainly have a knack for attracting Procrustean* interpretations from the right wing over non-events.   So it seems is the case with the latest manufactured scandal, Uranium One (U1) and the Clinton Foundation.  Amid the calls for investigations from the right, certain elements of the media have grossly mischaracterized aspects of the deal, implying that it poses a threat to national security by selling 20% of all US uranium to Russia. And since the principal party on the Russian side make large contributions to the Clinton Foundation while the deal was going through approvals, national security was sacrificed to the greed of the corrupt Clintons.

I’ll leave it to others to opine on whether the Clintons should have seen this coming and perhaps not accepted the donations, particularly since they do, indeed, appear to have been made to grease the skids. The bottom line here will be that nothing was done illegally, however it will nonetheless leave a bad taste in a lot of people’s mouths.

But let’s take a look at the reality of this deal and all that the right-wing media seems to be implying.

They allowed a US company to be bought by the Russians!

U1 was never a US company.  It was a Canadian company headquartered in Toronto with some US assets.

They’re sending 20% of our uranium to Russia!

First, U1 does not hold 20% of US uranium. U1 is the owner of the Willow Creek mine in Wyoming. Theoretically, U1 controls 20% of production capacity, not reserves. In 2014 it only produced 11% of US total production.  By 2016 the percentage of U1 production fell to 1.1% of total US production because its costs are not economic relative to world market prices.

But that’s only a piece of the puzzle.  Most people don’t realize that the US nuclear power industry mostly runs on foreign, imported uranium.  The chart below shows the annual consumption and percentage of that consumption that is foreign.  For the last 20 years US uranium purchases averaged 85% foreign origin. Why? Because US uranium deposits have never been cheap to mine; foreign sources, including Canada, are a lot cheaper. In 2016 about half of foreign uranium bought in the US came from Canada and Kazakhstan.


Second, under current law and the license from the US Nuclear Regulatory Commission, U1 is prohibited from exporting this uranium.  They would have to apply for an export license which, as you might gather, would be difficult to obtain. Bottom line- it all stays in country.

Where’s the beef?

Under any other circumstances this deal would be considered just one of many global transactions that happen to involve the US subsidiary of a foreign country, a transaction that ultimately had zero impact on US security of uranium supply, the industry as a whole and especially national security. Unfortunately, we now have the perfect storm of a) Hillary Clinton and the Clinton Foundation name involvement; b) a low information audience; c) the need on the right for any handy topic to divert attention from more serious matters; and d) “journalists” manufacturing another “outrage” of little substance.

*Procrustes was a figure in Greek mythology who hijacked travelers and placed them in a bed, either stretching them or cutting off limbs to make them fit.


US Nuclear Regulatory Commission Materials License SUA-1341

Uranium Marketing Annual Reports (2000, 2001, 2008, 2016), US Energy Information Agency

“Does Russia Really Own 20% of The US’ Uranium Reserves?” Oilprice.com https://oilprice.com/Alternative-Energy/Nuclear-Power/Does-Russia-Really-Own-20-Of-The-US-Uranium-Reserves.html retrieved 10/27/2017

Is Biomass Carbon Neutral? Depends On How Much Time You Have

It is almost axiomatic within the renewables community that the combustion of biomass is carbon neutral.  That is to say that virtually all carbon released by burning will ultimately be offset by the absorption of carbon by new growth, provided the agricultural scheme deployed is renewable and sustainable. This assumption regarding the carbon neutrality of wood combustion is even being pushed in current Congressional legislation. While burning some biomass feedstocks might be carbon neutral, real questions arise when the fuel is wood, especially in the form of wood pellets.  A growing body of evidence concludes that the use of wood pellets can be highly detrimental to the environment and, in actual fact, emits as much or more carbon than fossil fuel.

It is true that the carbon released by combustion sooner or later is reabsorbed by sustainable forests.  The problem is timing.  The Paris accords had as its objective the promotion of measures that would keep global temperature rise to 1.5o C by 2030.  Realistically 2.5o C is probably the best achievable.  But either way, what is most crucial is reducing carbon over the next 15 or 20 years. A recent report by the National Resources Defense Council (NRDC) takes an in-depth look at this issue and. [1]

Burning wood pellets emits about 1.5 times the carbon per unit of energy than coal and 3 to 4 times the carbon per unit energy of natural gas. And it does so all at once.  This creates what’s called a carbon debt that gets repaid be reabsorption over time.  That time frame is quite long depending on the proportion of whole trees used to make the pellets.  The NRDC study cited above showed the following results.


Source: NRDC


Source: NRDC

The higher the portion of whole trees used (Figure 1) increases the time frame of paying off the carbon debt.  In the case of 70% trees burned today, the debt does not start to be paid off until 2065. If only 20% trees are used (Figure 3), where the source is primarily wood waste and forest debris, the carbon emissions are less, but the payoff times are the same. (The NRDC study looked at bottom land hardwood forests in the southeastern US for this data.)

“Premium” wood pellets tend to be solely from whole trees, both soft and hardwood.

These “payoff” times are well beyond the critical period when carbon reductions are necessary.  So while it is fair to say that wood pellet combustion is theoretically carbon neutral, the question is how long you are willing to wait for the carbon debt generated with combustion is “repaid” through subsequent sequestration.

During this critical time frame of the next 15 to 20 years, wood pellets from a high proportion of whole trees emit more carbon than any fossil fuel.  In lesser proportions, wood pellets are no better than coal or natural gas. Simply not using whole trees is an option, however other studies have noted that available forest residuals alone cannot meet current biomass demand.

As you might expect, this is a matter of considerable controversy and has become a hot political topic in 2016. The current Senate energy bill (S. 2012) includes a provision that directs the Environmental Protection Agency (EPA) to classify woody biomass as a carbon neutral. Doing so would allow biomass to be an allowable alternative to coal under the administration’s Clean Power Plan. Pending House and Senate Interior Appropriations bills include similar direction to the EPA.  Frankly it appears that, once again, business interests are attempting to ignore or override the scientific evidence.  The Obama Administration, in a July Statement of Administration Policy regarding one of the House Appropriations bills (H.R. 5538), offered the following statement:

Classification of Forest Biomass Fuels as Carbon-Neutral. ….The Administration strongly objects to language under the heading “Administrative Provisions—Environmental Protection Agency” in the bill, which would compel EPA to disregard the scientific recommendations of its own Science Advisory Board and other technical studies.”

There are ancillary effects to classifying biomass as an acceptable fossil alternative.  If biomass were not allowed as part of the solution, a greater amount of truly clean sources would be required to meet the Clean Power Plan goals. Using woody biomass for electricity generation suppresses the use of these sources.

Given the substantial financial and lobbying resources of the industries involved in this sector it seems unlikely that science will prevail.

But that’s the story for woody biomass sourced from trees.  Biomass from other sources can certainly be renewable, sustainable and be carbon neutral within reasonable time frames.


[1] NRDC Issue Brief “Think Wood Pellets are Green? Think Again.” May 2015 https://www.nrdc.org/sites/default/files/bioenergy-modelling-IB.pdf

Risk Based Planning and Global Insurers Key to a Global Transition to a Low-Carbon Economy

The following article was written to answer the question “In your view, what are the policies that governments should take to encourage public-private partnership and enable the private sector to develop the goods and services necessary for a global transition to a low-carbon economy by 2030?” as a submission to the 2016 Masdar Engage Blogging Contest.

NASA space program public–private partnerships are frequently recommended as a model to achieve aggressive carbon mitigation goals.   A far more sophisticated approach than used by NASA will be required, involving a much broader array of participants including government; research and development organizations; energy and energy efficiency businesses; and the global insurance industry.  These groups must be coordinated and managed using a dynamic strategic planning process.

Dynamic, Risk Based Strategic Planning

Risk based strategic planning (RBSP) begins with a defined set of end states – in this case the specific milestones for emission reductions –  and the construction of several technology development scenarios to achieve them. An inventory of current technologies that could address these goals which are available or in development is taken and the risks associated with each are assessed, including the likelihood of commercialization, energy and market economics, access to financial resources, potential regulatory barriers and environmental impact.  Using risk thresholds, the portfolio is culled to optimize achievement of scenario goals.  The process is continuous with assessments conducted on a regular basis to pare and shape the portfolio.  Such an approach would allow for a systematic optimization of carbon mitigation through technology development.

Stakeholder Roles

R&D organizations and the private sector involved with energy generation and energy efficiency will contribute to the process by providing input to its development and management as well as implementing the technology development defined in the RBSP process.  Their traditional roles will continue, albeit managed somewhat differently.  The roles of government and the insurance industry, however, are unique to this plan.


In addition to the traditional policy direction, government needs to be directly involved in the creation and management of the RBSP process.  This cannot be done using the traditional “ivory tower” approach.  Government must articulate directional policies and provide the foundation for the creation and management of the RBSP in close cooperation with all of the stakeholders. Given its risk based approach and the assessment techniques necessary, the insurance industry’s involvement will be key.  In addition, government can provide financial resources to and incentives to mitigate the financial risks associated with each technology’s development and commercialization.

Government has another important role as it relates to loosening exclusionary intellectual property as well as anti-trust regulation.  IP protection, at least as it is currently being conducted, is a barrier to rapid and collaborative technology development. One need only consider the beneficial impact of limiting IP exclusivity on the U.S. aviation industry between the world wars or the integrated circuit industry in the 50’s and 60’s.  All parties need to be willing to share IP and have the ability to collaborate in ways that would be illegal under current anti-trust regulation.

Global Insurance

The Insurance industry routinely influences public and private decisions in many areas of our economy, some less apparent than others.  Global reinsurance companies are well aware of the long term liabilities inherent in increasingly extreme weather and the rise in global temperatures.  Quietly this industry has been modifying policies for insureds that reward efforts to reduce carbon and increase energy efficiency for the past 20 years.  Global insurance would play a vital role by applying its core competencies of sophisticated risk assessment and mitigation to the RBSP process as well as aligning its own products with the goals of the process.

Fundamental changes in the roles of government and industry, as well as inviting the global insurance industry to play a very significant role, will be necessary to achieve the COP21 goal of limiting the rise in global temperature to 2 degrees C by 2030.

Guest Post: Ontario Adaption to New Energy Economy

Guest post is from Emma White from Auvisa.org. Auvisa.org was founded in 2011 by migration lawyers and it provides professional consular service to Australia. Emma White is an environment enthusiast and wiling to devote her knowledge to make a better world.

How Ontario is getting ready to join the new energy economy in Canada

Canada is not that far behind the U.S. and Europe when it comes to implementing the new energy economy. The city of Ontario is looking forward to have a clean, ground-breaking and profitable energy economy due to the weakening of the oil sector in Canada. If Ontario can make this happen, then Canada will be leading the pack of countries when it comes to a clean and profitable energy sector. It will also be a new element that is added to the already present renewable energy assets. It has been discovered that with the new energy economy, more jobs will be available for people in Ontario and elsewhere in Canada. It has also been discovered that air pollution-related deaths will be decreased drastically due to the implementation of renewable energy sources. More and more places around the world have begun to realise the importance of renewable energy sources and Ontario is no different.

Renewable Energy Sector for Electricity

Ontario has already invested in a huge renewable energy sector that consists of wind and solar generation, which is an addition to its hydro stations. The only problem is sometimes it produces more electricity than what the city of Ontario needs. There have been ideas and solutions given, such as selling the excess electricity to the neighbouring countries, but even that is a problem when these neighbouring countries are looking for solutions too for their excess electricity. The only solution left in this situation is to give neighbouring places the excess electricity for free or even pay them to absorb the excess electricity. This is why Ontario is has created a program when it comes to energy storage solutions that will secure a storage capacity that is able to withhold 50 megawatts of energy.

More Ideas for New Energy Economy Storage Solutions

By using wind, solar, hydroelectricity and bioenergy as renewable energy sources, Ontario is not the only city in Canada riding on the new energy economy train, other cities in Canada are working hard with their new inventions for a new energy economy. In Toronto at the MaRs centre, Hydrogenics Corp. is converting electricity into hydrogen, which will be used as an addition to natural gas. Renewable Energy Systems Canada Inc. is also busy creating newer, better and more efficient batteries. Hydrostor is occupied storing compressed air, which can be used to generate electricity whenever required, from the water pressure of Lake Ontario off Toronto Island. More ways are being given to help expand renewable energy generation. More ideas are being produced to encourage energy conservation. More planning is being put to promote the conception of clean energy jobs.

Promoting New Energy Economy in Ontario

The government of Ontario has been promoting the new energy economy to its people and how they can help through the little things. Steps, such as buying food and goods that are made in Ontario are being highlighted to its people. Ontario is also promoting clean travel by urging its people to travel more on bikes and public transport, which will make for lesser cars on the road. Residents are also being requested to start drinking water directly from the tap instead of using water bottles. Aside from these promotions, the government of Ontario is also asking its people what they want to see as part of the new energy economy.

Slow Steps towards New Energy Economy

Canada wants a clean-energy economy and the country wants it fast, but not at all costs. This is why all the cities in Canada are taking steps towards a new energy economy. The reasons why Canada wants all of its cities to move towards a new energy economy are for its economic and social well-being as well as for the health of its people, especially children. It is a well-known fact that the current oilsands mining situation comes with bad health impacts, which is why this country wants a clean-energy economy. More jobs are becoming available for sectors that work under the new energy economy, as more and more solar panels and wind turbines are being built. In Ontario, wind energy is growing significantly, which makes more domestic and foreign companies wanting to invest in this city.


German Electricity Rates Projected To Return to 2015 Levels by 2035

In 2015 Germany enacted a law whose short title is the Renewable Energy Sources Act of 2014 (Erneuerbare-Energien-Gesetz, or EEG 2014).  EEG 2014 formalizes the fundamental shift in energy policy in Germany, the Energiewende, from a coal and nuclear system to one which requires the mix of electricity generation in Germany to reach 40% – 45% renewable sources by 2025 and 55%- 60% renewable sources by 2035.  This is to be encouraged by feed in tariffs that guarantee prices for new renewable entrants while requiring grid operators to receive and purchase electricity from these sources.  As expected, EEG 2014 met with some criticism, primarily a claim that it would be too expensive. Agora Energiewende, an energy policy group, commissioned the Oeko Institute e.V. to model the effects of EEG 2014 specifically on its likely impact on consumer electricity rates.  The report* concluded that:

  • The cost of electricity to consumers increases through to 2023 by between one and two cents per kwh, but then declines at a rate of between two and four cents/kwh until 2035. In 2035 rates are forecasted to be the same as 2015 – 8 to 10 cents/kwh.
  • By 2035 60 percent of German electricity will come from renewable energy sources, from about 28% today.
  • As the real costs for renewable generation decline, the primary drivers to the incremental costs of the German Energy Plan become the actual demand levels and the extent to which energy intensive industries are subsidized.
  • Investments in renewable energy increase through 2023 and then decline, however renewable energy’s share of the generation mix continues to rise.

The assumed generation mix that was used in the reference case for this study is presented in the figure below:

EEG Ref Generation

Source: Oeko Institut 2015, EEG Model

This translates to the following projected share of the overall electricity source mix for renewables:

EEG Renew Share

Source: Oeko Institut 2015, EEG Model

EEG 2014 provides for the following feed in tariffs, cents/kWh:

2015 2025 2035
Onshore Wind 8.9 7.2 5.3
Offshore Wind 19.4 14.3 10.9
Solar 11.0 10.3 8.4
Biomass 17.7 16.0 14.5
Geothermal 25.2 19.6 15.2
Hydro 11.7 11.2 10.6
Average Mix 14.8 10.6 8.1

Source: Angora Energiewende

Note that the system average feed in tariff declines over time.  Nonetheless, these tariffs are significantly higher than wholesale power costs from conventional sources.  Under EEG 2014, transmission system operators (TSOs) are permitted to charge electric utilities an “EEG Levy” to compensate them for paying these feed in tariffs and the utilities pass these charges on to consumers.

The EEG Levy assumed in this analysis, along with the base cost of electricity, is shown in the following graphic.

EEG Rates

Source: Oeko Institut 2015, EEG Model


Based on the assumptions inherent in this analysis, the overall cost of electricity to the consumer rises a few cents in the early 2020’s and then declines to rates comparable to rates experienced in 2010.

The Big Loophole

Not all consumers are subject to the EEG Levy, however.  Many electricity intensive industrial and commercial end users have received exemptions from the EEG Levy, a point of considerable controversy in the country.  58 TWh are totally exempted and 110 Twh are partially exempted. Most notably residential customers pay full freight.  Were there less exemptions, the EEG Levy would be much lower, as shown in the figure below.  No exemptions for any customer basically cuts the levy in half.

EEG Loophole

Source: Oeko Institut 2015, EEG Model

The EEG Levy cannot be viewed in isolation, however.  No doubt applying the levy to all industries would have some concomitant effect on the economy and some exempting is necessary.  That said, however, even with loopholes, maintaining a relatively flat trajectory on consumer rates while radically increasing the renewable energy mix in electricity generation to over 60% will be quite an achievement.


*Agora Energiewende “Die Entwicklung der EEG-Kosten bis 2035” May 2015: http://www.agora-energiewende.org/fileadmin/downloads/publikationen/Studien/EEG_2035/Agora_EEG_Kosten_2035_web_060515.pdf

The Recent “Mind Bogglingly Stupid”* Arguments Against Fuel Cell Vehicles

During a press conference at the Automotive News World Congress in February Elon Musk was famously quoted saying hydrogen fuel cells are “extremely silly,” and that fuel cell electric vehicles (FCEVs) are “incredibly dumb.” He made two arguments to support this view – that electrolysis to generate hydrogen is way less efficient than using solar to charge vehicle batteries and that hydrogen was an unsafe fuel. So this is pretty transparent: it’s just the old slam-your-competition marketing ploy.  Musk’s Tesla must feel pretty threatened by the spate of fuel cell electric vehicles coming on the market, especially in Japan and California. But then a month later we get Climate Progress publishing an article by Joe Romm seconding Musk’s view and supporting his opinion with actual charts.   Romm’s analysis, with all its credentials, is no better than Musk’s uninformed off the cuff commentary.

Romm essentially recycles an article he published in Scientific American in 2006 where his primary criticism, as I interpret it, follows this equation:


REI=> (CHG) or (EWMFC) => EMP


REI=Renewable power in

CHG= Charge battery

EWMFC=Electrolyze water for hydrogen, make fuel cell

MP=Energy expended motive power

In the case of a FCEV fueled with hydrogen from renewably generated electrolysis, only 20% to 25% of REI ends up as EMP.  An electric vehicle (EV) charged with renewably generated electricity gets 75% to 80% of REI.


That’s it.  The sum total of the argument. Note the complete absence of any economics. Eliminating cost (and the discussion of other paths for zero emission FCEVs) relegates this whole argument to the realm of fierce debates over how many angels dance on the head of a pin.  Perhaps intellectually challenging, but irrelevant to the market or to policy decisions.  Think about it: install a solar array at a particular cost. Use its output to operate an electrolysis unit for hydrogen or use it to charge batteries.  Is one more efficient in the use of solar power? Sure.  But does it matter? No. Either way you have a true zero emission vehicle.  And as long as the cost per mile is competitive, it makes sense in the market place. Might the battery vehicle be a little cheaper in cost per mile? Perhaps, but what if the end user is willing to value range, where the FCEV wins hands down?

The reality, however, is that we are on the cusp of a new market of lower emission vehicles.  The zero emission world is still a good distance away because economics are a real factor.  That means we need EVs and FCEVs, and it also means that they are not completely “green” but rather olive drab.  EVs in most places will not be charged with renewable electricity but from whatever the local grid supplies, and that can be pretty dirty.  Most FCEVs will get their hydrogen from natural gas – its use in a fuel cell is an improvement over direct combustion but still results in carbon emissions.

The bottom line here is that simplistic assertions are no more than that, and while soundbites in headlines attract, they are not analysis and should not be taken seriously.

** Headline in EV World, July 7, 2014 “Musk: Fuel Cells ‘Mind Bogglingly Stupid'”

Is That Fuel Cell Economic? Forget cents/kWh or GGE

It’s very easy to find graphics that compare the cost of several forms of emerging energy technologies.  In the case of fuel cells, since they make electricity to perform a task, the metric used is the cost of a unit of electricity: (pick your currency) per kilowatt-hour or cents/kWh.  In vehicular applications, an attempt is made to equate hydrogen fuel with gasoline, generating the absurdly fictitious “gallon of gasoline (or liter of petrol) equivalent” or GGE.  If you see these metrics used, you are witnessing one of the greatest failures of the fuel cell industry: its inability to articulate its worth.

Allow me to demonstrate how daft and self-defeating these comparisons can be.  We all use batteries in our daily lives.  Batteries generate electricity, which we put to good use.  The going rate for AA batteries is broad, but to pick a number, a 4 pack of Energizer batteries is $4.01, or about $1/battery.

Each battery provides a little less than 3 watt hours of electricity.  That means that if you compared AA batteries with other forms of generation, its output would be about $330/kWh.    Now let’s take that value and do the conventional comparison with other generation forms, shown below.  Note that this uses a logarithmic scale.

Clearly it looks horribly expensive.  But here’s the thing- we don’t value the AA battery for its costs of electricity, we value it for its convenience and size.  Relative to other kinds of electricity generation, it costs a fortune, but only because we are using the wrong metric.  A friend and mentor reminds me frequently that what is being sold is the product of the product, not the product itself.  And so it goes with fuel cells.

This is readily apparent in three applications where fuel cells are deemed commercial and where sales are happening every day: remote telecommunications backup power; uninterrupted storage and as replacement drives for battery systems in materials handling equipment.  In each case, what make the fuel cell commercially viable is its context in an economic system that values the attributes of its output, not the actual output itself.  Consider any of the following factors:

  • Avoided costs of equipment to achieve desired level of enhanced:
    • Reliability
    • Power Quality
  • Avoided costs of battery maintenance and disposal
  • Value of quiet operation
  • Avoided fees and penalties for emissions for certain industries
  • Longer operational periods in EPA non-attainment areas
  • Much longer operation in battery replacement applications
  • Portability

Each one can be valued and monetized in the overall economic equation.

Total Cost of Ownership (TCO)

A far better metric and methodology for evaluating the commercial viability of fuel cells is total cost of ownership (TCO), a form of life cycle cost analysis.  Investopedia defines TCO as “The purchase price of an asset plus the costs of operation. When choosing among alternatives in a purchasing decision, buyers should look not just at an item’s short-term price, which is its purchase price, but also at its long-term price, which is its total cost of ownership. The item with the lower total cost of ownership will be the better value in the long run.”

Materials Handling Equipment

Use of TCO is best illustrated by the business case for fuel cell replacements in electric drive systems for materials handling equipment.  Virtually all indoor forklift trucks are battery powered electric units. A recent DOE report provides a detailed analysis, summarized below.[i]

The relevant costs of ownership include the following items:

  • Cost of the bare forklift
  • Cost of the required battery or fuel cell systems
  • Cost of battery changing and charging or hydrogen fueling infrastructure
  • Labor costs of battery changing or hydrogen fueling
  • Cost of energy required by the forklifts
  • Cost of facility space for infrastructure (indoor and outdoor)
  • Cost of lift truck maintenance
  • Cost of battery or fuel cell system maintenance.

When each of these cost elements are evaluated, the following table results for a hypothetical Class I or Class II forklift:

Total Annual Cost of Ownership
Cost Element Battery Drive Forklift Fuel Cell Drive Forklift
Amortized cost of truck $2,800 $2,800
Amortized cost of Battery or Fuel Cell Unit $2,300 $2,600
Per Truck Cost of Charging Battery/ Fuel Cell Hydrogen Fueling Infrastructure $1,400 $3,700
Labor Cost for Charging or Refueling $4,400 $800
Cost of Electricity/Hydrogen $500 $2,400
Infrastructure Warehouse Space $1,900 $500
Forklift Maintenance $2,800 $2,800
Battery/ Fuel Cell Maintenance $3.600 $2,200
Total Cost of Annual Ownership $19,700 $17,800


If one only looked at the total costs of the forklift plus drive unit, the fuel cell unit is more expensive.  Add in the cost of charging batteries, the cost of hydrogen and the charging/fueling infrastructure, the fuel cell looks that much worse. Now factor in the productivity costs or gains: the labor cost for refueling a fuel cell is far less than that of a battery unit; the warehouse costs are far less, as is the maintenance costs of the drive units.  At this level of analysis, the fuel cell drive is the clear winner, although it represents a discrete set of values.  An analysis which looks at the sensitivity of each of these parameters underscores the clear choice of the fuel cell drive unit.

Source: NREL

There are other increases to productivity for the fuel cell that these analyses do not capture.  Over a normal shift, the battery loses capacity such that near the end of a shift it cannot lift the same amount of material to the same heights.  Fuel cell units retain their power as long as they have fuel available.  In some cases, more electric drives need to be purchased to compensate for long battery recharge times and the diminished capacity of units over shifts.  Finally, while the costs of battery maintenance are included above, the environmental cost of battery disposal are not.  Fuel cell units do not have that problem.

A similar analysis can be performed for remote telecom site backup.  In this case, the fuel could either be a liquid (operating a methanol fuel cell), or compressed hydrogen.  Diesel generators or battery units require maintenance, with very high labor costs attributed to simply getting to the site and returning.  A fuel cell unit, once installed and made ready for operation, eliminates a considerable amount of potential labor costs.  In addition, it does its work without emissions and without noise.

Gallon of Gas Equivalent

The GGE metric, when applied to hydrogen fuel cells, is one of the most inappropriate attempts to compare one type of fuel system with another.  Clearly it was created on the assumption that it would be easy for the general public to understand.  All it does is obfuscate reality.  GGE works as a comparison basis when we are talking about fuel use in an internal combustion engine which resides in a vehicle that was designed with an internal combustion engine.  Period.  The only time GGE would apply to a hydrogen fueled vehicle would be if hydrogen was being combusted in a conventional engine.  Further, GGE by definition relies on petroleum economics to set price and petroleum market dynamics have nothing to do with the cost of hydrogen.  A fuel cell vehicle is designed to accommodate a fuel cell and make best use of its attributes.  It is far more efficient than combustion engines and makes best use of the available electricity to incorporate features not found in today’s vehicles.

The introduction of fuel cell vehicles offers the opportunity for end users to think about their transportation quite differently from what is on the road today.  Instead we persist in talking about these new vehicles in terms that do not fit.  Most egregious is the continued use of GGE as a filter to determine where R&D funding should go for hydrogen vehicles and refueling infrastructure.  For several years, if someone guessed that a particular project or concept could not beat $3.50 GGE it was rejected.  Achieving lowest cost is certainly a goal but using the wrong yardstick is just plain stupid.

A far more appropriate metric for comparing new and emerging vehicles (and the R&D associated with them) is cost per distance.  This metric would apply to fuel cells and to electric vehicles.

Emerging Energy Metrics

As new forms of energy emerge in this new energy economy as much care needs to be taken in their evaluation to assure that we take fully into account the change in perspective that comes with them.  The risk in using old methods to consider new concepts is that we miss altogether their potential.

[i] Ramsden, Ted USDOE “An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment” NREL/TP-5600-56408. April 2013

Contrarian Approach to Fuel Cell Powered Forklifts and Scooters in Taiwan 燃料电池发展的逆向操作:台湾叉车及摩托车

The worldwide population of motor scooters is approaching 130 million. China alone produced over 40 million gasoline powered motor scooters in 2011. Many of these engines emit 8 to 30 times the hydrocarbons and particulates emitted by automobiles. Several companies are developing fuel cell powered scooters to reduce these enormous emissions. Fuel cells are devices that make electricity from hydrogen and oxygen, emitting water vapor as the exhaust. When hydrogen is produced from renewable sources, or even from natural gas the emissions are far less than those resulting from oil refining and combustion. Fuel cell powered scooters run on that electricity.


Two years ago I wrote about a very forward thinking fuel cell technology company in Taiwan (http://worthingtonsawtelle.com/fuel-cells-and-7-eleven/), Asia Pacific Fuel Cell Technologies, Ltd. (APFCT). The company had just rolled out its first major demonstration of fuel cell powered scooters.

两年前我在台湾为一家非常具有前瞻性的燃料电池公司 – 亚太燃料电池科技公司写了一篇文章( http://worthingtonsawtelle.com/fuel-cells-and-7-eleven/)。该公司当时刚举行其首次大型燃料电池摩拖车的示范运行。

What was unique about the company and its scooters was the approach APFCT took to fueling. APFCT designed their system with simplicity and consumer convenience in mind. Instead of taking the path of nearly all fuel cell transportation devices that require the refilling of an onboard cylinder with highly compressed hydrogen, the APFCT units use small canisters that store hydrogen in metal hydride powder. Instead of driving the vehicle to a fueling station and waiting for a cylinder to be filled the user simply takes their empty canisters to a vendor who exchanges them for filled canisters (with about the same internal pressure as a racing bike tire).


In its first demonstration APFCT put 80 scooters on the road at a beach resort in southern Taiwan. Tourists were permitted to use the scooters for free. When they ran out of hydrogen all they needed to do was to take the empty canisters to any 7–Eleven convenience store, repair shop or police station for exchange. Why 7-Eleven? Taiwan has the fifth largest number of 7-Eleven stores in the world, behind the U.S., Japan, Thailand and South Korea. There is a 7-Eleven within walking distance of almost any place in Taiwan.


APFCT has continued to build upon this hydride storage fueling model over the last two years. It has tested a number of different vehicles, all of which use identical canisters. Those with larger hydrogen demands simply require more canisters for operation.


Scooters 2.0


Last November, APFCT began a second scooter demonstration in Taiwan with the city government of Taipei. In this demonstration 20 scooters have been deployed for use in environmental auditing site inspections and surveying by city officials.


101 scooters

APFCT’s current scooter model has a range of approximately 80 km.


glacier color scooter

Fueling costs can be very economic – in the Taipei demonstration, the local cost of electricity to generate the hydrogen results in a canisters exchange cost of NTD 30 (about USD 1).

充氢成本可以是经济实惠的 – 在台湾示范运行中储氢罐交换价格为新台币30元 (约一块美金),此价格包括当地产氢所使用的电力及物流费。

rear canisters

chen fueling

APFCT says this current model would sell for about NTD 90,000, about USD 3,000. That’s not quite a commercial price, but getting close. Assuming a successful demonstration, orders from city governments and the public could generate sufficient volume to get the price down, which would make APFCT fuel cell scooter be competitive with gasoline powered scooters.


Fork Lifts


APFCT has migrated its consumer friendly fueling system to a forklift application. They recently completed a demonstration of 5 forklifts in a distribution center in Taiwan operated by the RC Mart chain.


forklift front


Forklifts are an area of significant growth for fuel cells and one of the few applications that are commercially economic. Globally, there are at least 5,000 forklifts in operation at large distribution centers. These forklifts were all originally electric drive battery units. Their electric drives were all replaced with a fuel cell power system. The fuel cell systems themselves are somewhat expensive, however when one compares their total cost of ownership of the swapped out system with that of an electric drive, fuel cell systems are cheaper to operate and increase worker productivity.


The following chart provides a quick cost comparison between the two systems. In this case, a Class III forklift is used, which is a smaller unit where the operator rides on the truck.


TCO chart

Source: APFCT, Worthington Sawtelle LLC, National Renewable Energy Laboratory

Annualized cost

图片来源: APFCT, Worthington Sawtelle LLC, National Renewable Energy Laboratory

The bottom line here is that even though their fueling infrastructure and electricity costs are less, the battery driven units require significant labor for charging and refueling. What the chart does not show is that more battery units are required for a three shift day than fuel cell units; one battery unit must always be charging.


Virtually all fuel cell options for forklifts use high pressure hydrogen storage linked to a fuel cell with high internal pressures. Notice that in the high pressure bar above, all but the cost of hydrogen are likely to be relatively constant. The economics of the system depend almost entirely on the cost of hydrogen fuel. All systems currently in operation get their hydrogen delivered to a dispensing station in the distribution center from tube truck deliveries. The cost of that hydrogen increases with distance from the hydrogen production facility. Because of these high costs, a few operators are considering the installation of small natural gas reformers to generate hydrogen on-site from natural gas, which is relatively inexpensive in today’s market.


APFCT, characteristically, has developed a much different solution to this application, one which enhances its already winning cost analysis. The APFCT unit is shown as the third bar in the chart above, labeled “Low Pressure Fuel Cell.” This forklift design uses four fuel canisters that are identical to the ones used in the scooter. But unlike most other fuel cell forklifts, the APFCT unit uses a low internal pressure fuel cell. Lower internal pressures are less susceptible to membrane failure and have less moving parts. In the picture below the cabinets by this unit are the refuelers. Fuel canisters are placed in a rack in the unit and refilled with hydrogen being released from water through electrolysis.

亚太燃料电池一如既往地为叉车发展出与众不同的解决方案,图表成本分析中也显示了此解决方案的优势。亚太的叉车系统列在图表中的第三条,标有“低压燃料电池” 。该叉车设计采用四个储氢罐,与燃料电池摩托车所使用的储氢罐是相同的。和大多数燃料电池叉车不同的是,亚太使用了低内压的燃料电池。较低的内部压力使质子交换膜较不易损坏且运动部件较少。在图中位于叉车旁边的柜子内置有充氢机。充氢机可透过电解水制氢将氢气充填至氢气罐。

Next Steps


The best technology does not always make it in the marketplace, however. APFCT’s fueling approach offers a number of clear advantages over what is now regarded as conventional. Nonetheless, a number of alternative methods to store and dispense hydrogen in transportation applications have been attempted and then largely abandoned – usually due to the fact that such commercialization decisions are heavily influenced by the automobile manufacturers. It remains to be seen if APFCT can overcome the momentum already gained by others who are thoroughly invested in the high pressure cylinder on-board hydrogen storage model.

有时最好的技术并不容易商业化,亚太的低压储氢方式提供了许多明显的优势。尽管如此,目前已有部份储氢和配氢的替代方法都已经尝试过后并放弃 – 通常是由于此类替代方案的商业化主要是由汽车制造商所决策。让我们拭目以待,看亚太是否能克服多数使用高压储氢罐的主流,让低压金属储氢成为通往氢经济的快捷方式。

Energy subsidies | Levelling the Subsidy Playing Field (Guest Post)

Originally published at JBS News by John Brian ShannonJohn Brian Shannon

By now, we’re all aware of the threat to the well-being of life on this planet posed by our massive and continued use of fossil fuels and the various ways we might attempt to reduce the rate of CO2 increase in our atmosphere.

Divestment in the fossil fuel industry is one popular method under discussion to lower our massive carbon additions to our atmosphere

The case for divestment generally flows along these lines;
By making investment in fossil fuels seem unethical, investors will gradually move away from fossil fuels into other investments, leaving behind a smaller but hardcore cohort of fossil fuel investors.

Resulting (in theory) in a gradual decline in the total global investment in fossil fuels, thereby lowering consumption and CO2 additions to the atmosphere. So the thinking goes.

It worked well in the case of tobacco, a few decades back. Over time, fewer people wanted their names or fund associated with the tobacco industry — so much so, that the tobacco industry is now a mere shadow of its former self.

Interestingly, Solaris (a hybridized tobacco plant) is being grown and processed into biofuel to power South African Airways (SAA) jets. They expect all flights to be fully powered by tobacco biofuel within a few years, cutting their CO2 emissions in half. Read more about that here.

Another way to curtail carbon emissions is to remove the massive fossil fuel subsidies

In 2014, the total global fossil fuel subsidy amounted to $548 billion dollars according to the IISD (International Institute for Sustainable Development) although it was projected to hit $600 billion before the oil price crash began in September. The global fossil fuel subsidy amount totalled $550 billion dollars in 2013. For 2012, it totalled $525 billion dollars. (These aren’t secret numbers, they’re easily viewed at the IEA and major news sites such as Reuters and Bloomberg)

Yes, removing those subsidies would do much to lower our carbon emissions as many oil and gas wells, pipelines, refineries and port facilities would suddenly become hugely uneconomic.

We don’t recognize them for the white elephants they are, because they are obscured by mountains of cash.

And there are powerful lobby groups dedicated to keeping those massive subsidies in place.

Ergo, those subsidies likely aren’t going away, anytime soon.

Reducing our CO2 footprint via a carbon tax scheme

But for all of the talk… not much has happened.

The fossil fuel industry will spin this for decades, trying to get the world to come to contretemps on the *exact dollar amount* of fossil fuel damage to the environment.

Long before any agreement is reached we will be as lobsters in a pot due to global warming.

And know that there are powerful lobby groups dedicated to keeping a carbon tax from ever seeing the light of day.

The Third Option: Levelling the Subsidy Playing Field

  • Continue fossil fuel subsidies at the same level and not institute a carbon tax.
  • Quickly ramp-up renewable energy subsidies to match existing fossil fuel subsidies.

Both divestment in fossil fuels and reducing fossil fuel subsidies attempt to lower our total CO2 emissions by (1) reducing fossil fuel industry revenues while (2) a carbon tax attempts to lower our total CO2 use/emissions by increasing spending for the fossil fuel industry

I prefer (3) a revenue-neutral and spending-neutral solution (from the oil company’s perspective)to lower our CO2 use/emissions.

So far, there are no (known) powerful fossil fuel lobby groups dedicated to preventing renewable energy from receiving the same annual subsidy levels as the fossil fuel industry.

Imagine how hypocritical the fossil fuel industry would look if it attempted to block renewable energy subsidies set to the same level as fossil fuel subsidies.

Renewable energy received 1/4 of the total global subsidy amount enjoyed by fossil fuel (2014)

Global Energy Subsidies 2014. (billions USD). Image courtesy of IISD.

Were governments to decide that renewable energy could receive the same global, annual subsidy as the fossil fuel industry, a number of things would begin to happen;

  • Say goodbye to high unemployment.
  • Say goodbye to the dirtiest fossil projects.
  • Immediate lowering of CO2 emissions.
  • Less imported foreign oil.
  • Cleaner air in cities.
  • Sharp decline in healthcare costs.
  • Democratization of energy through all socio-economic groups.


Even discounting the global externality cost of fossil fuel (which some commentators have placed at up to $2 trillion per year) the global, annual $548 billion fossil fuel subsidy promotes an unfair marketplace advantage.

But instead of punishing the fossil fuel industry for supplying us with reliable energy for decades (by taking away ‘their’ subsidies) or by placing on them the burden of a huge carbon tax (one that reflects the true cost of the fossil fuel externality) I suggest that we simply match the renewable energy subsidy to the fossil subsidy… and let both compete on a level playing field in the international marketplace.

Assuming a level playing field; May the best competitor win!

By matching renewable energy subsidies to fossil fuel subsidies, ‘Energy Darwinism’ will reward the better energy solution

My opinion is that renewable energy will win hands down and that we will exceed our clean air goals over time — and stop global warming in its tracks.

Not only that, but we will create hundreds of thousands of clean energy jobs and accrue other benefits during the transition to renewable energy. We will also lower healthcare spending, agricultural damage, and lower damage to steel and concrete infrastructure from acid rain.

In the best-case future: ‘Oil & Gas companies’ will simply become known as ‘Energy companies’

Investors will simply migrate from fossil fuel energy stock, to renewable energy stock, within the same energy company or group of energy companies.

At the advent of scheduled airline transportation nearly a century ago, the smart railway companies bought existing airlines (or created their own airlines) and kept their traditional investors and gained new ones.

Likewise, smart oil and gas companies, should now buy existing renewable energy companies (or create their own renewable energy companies) and keep their traditional investors and gain new ones.

Related Articles:

The post Energy subsidies | Levelling the Subsidy Playing Field appeared first on kleef&co.